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Small fractional parts of additive forms

By GLYN HArRMAN

School of Mathematics, University of Wales College of Cardiff, Senghennydd Road,
Cardiff CF2 44G, UK.

We show how the methods of Vaughan & Wooley, which have proved fruitful in
dealing with Waring’s problem, may also be used to investigate the fractional parts
of an additive form. Results are obtained which are near to best possible for forms
with algebraic coefficients. New results are also obtained in the general case.
Extensions are given to make several additive forms simultaneously small. The key
ingredients in this work are: mean value theorems for exponential sums, the use of
a small common factor for the integer variables, and the large sieve inequality.
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1. Introduction

We write ||z|| to denote the least distance from x to an integer. Also, given real

PHILOSOPHICAL
TRANSACTIONS
OF

numbers a,,...,a,, and a positive integer k, we put
F(x)=o2+...+a,2k for x=(x,...,x,),
and we also write a = (a,,...,a,). In this paper we shall be concerned with the

problem of making ||[F(x)|| ‘small’ for xeZ°, x # 0. In fact we will take all the
coordinates of x to be non-negative (if £ is odd and the coordinates of x can take
values of either sign the problem is somewhat different (see ch. 14 of Baker (1986)).
Given a positive integer N we write

N={neZ°:0 < n; < N,maxn; > 1}.
J
The natural question to ask then is: for what function a(s, k) is it true that

min |[F(n)| < N~*®9, (1)

neN

at least for all large N? For almost all ae R® one can take a(s, k) = s, at least for
infinitely many N, and this is best possible (see §6, ch.1 of Sprindzuk 1979). There
is no difficulty in showing that in general one must have a(s, k) < k, by considering
a; = /2 for all j, for example. By Dirichlet’s theorem a(1,1) = 1, so we may hence-
forth suppose that k>2. Cook (1972) obtained a(s, k) = 2% for s<2%1
while Schlickewei (1979) established a(s, k) = k—c(s, k) with ¢(s,k)—0 as s—c0.
Unfortunately c(s, k) tends to zero very slowly (like (log s)%). Much better results
are known for the case k = 2 (see Baker 1983 ; Baker & Harman 1982 ; Heath-Brown
1991) in all of which ¢(s,2) = O(1/s)). In view of the apparently considerable
difficulty in improving c(s, k) for £ > 3 by Schlickewei’s method, it seems worthwhile

THE ROYAL
SOCIETY

Phil. Trans. R. Soc. Lond. A (1993) 345, 327-338 © 1993 The Royal Society
Printed in Great Britain 327

13-2

PHILOSOPHICAL
TRANSACTIONS
OF

CHY
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

A
AN

' \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

328 Q. Harman

to relax the question somewhat. Here we shall consider what happens for ae A®
(A being the set of real algebraic numbers) and what happens for « in general if one
is only interested in infinitely many solutions to (1).

Our method relies heavily on an important auxiliary result from the Hardy-—
Littlewood circle method, namely

1
)
Here 2 is a relatively dense set of integers, R is a suitably large (in terms of k) even
integer, and e(x) = exp(2nix). Even with Hua’s inequality for (2) (see Lemma 2.5 of
Vaughan 1981) we would obtain strong results by our present approach. We are able

to use the much more powerful results given by Vaughan & Wooley, however, and
80 prove theorems which tie up quite well with what is known for Waring’s problem.

Theorem 1. Let k = 2 be given, and define R = R(k) by

k: 23 4 5 6 7 8 9 10
R: 4 8 12 18 24 34 42 52 60

N R
% e(yn®)| dy < NEF*e, (2)

n=1
ne#

For k> 11 let R be the smallest even integer not less than the value for G(k) given by
Vaughan & Wooley (this volume) and Wooley (1992). Let ae AR and suppose that
e > 0 is given. Then for all N > N(a, €) there are solutions to (1) with a(s, k) = k—e.

Remarks. By Wooley (1992) for large k we have R ~ k log k. With some extra work
R can be taken as an odd integer and this would reduce the values given by one for
certain k. Theorem 1 improves the work of Cook (1989) where, for example, 2k?
variables yield only a(s, k) ~ 0.132 k. Our result is best possible, apart from the ¢, as
we have already remarked, although one would hope to require fewer variables. We
now show that the ¢ may be removed with an additional constraint imposed.

Theorem 2. Let k = 2 be given, and define T = T(k) = R(k)+ 1. Let ac AT, and
suppose that each coordinate of a is a quadratic irrational. Then for all N > N(a) there
are solutions to

min |[F(n)| < K(a)N7*. (3)
neN

Here K(a) is an effectively computable constant depending on o.

Remarks, The constant N(«) might not be effectively computable given our current
state of knowledge. If we drop the constraint that each o, is a quadratic irrational
then (3) is true for infinitely many N as we shall explain later.

Theorem 3. Let k > 2 and s > R(k) be given, and suppose that we R°. Then, given
e > 0, there are infinitely many solutions to (1) with a(s, k) = k—c(s, k) —e, where

o(s, k) = k(1—(2k—1)"1")  with ¢=[(s—1)/(R—1)] (4)
= (k(R—1)/s)log (2k— 1)+ O(s72). (5)
Here R = R(k) is defined as in Theorem 1.

Remark. We have c(s, k) ~ C,/s with €, ~ 6.6, O, ~ 33.8, ¢, ~ 85.6, and O, ~
k*(log k)* as k—oco. Better results are known for the case k = 2 (see Baker 1983).

Phil. Trams. R. Soc. Lond. A (1993)
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In the case £ = 2 by Theorem 20 B of Schmidt (1977) we know that if a,, ..., &, form
a not very well approximable set, in the sense that

I flay ]| < n*-d 6)
j=1
has only finitely many solutions in #» for every § > 0, then one can take a(s,2) ~
v/ (2s) as s—>o00. Examples of such sets include sets of algebraic numbers where 1,
&y, ..., are linearly independent over Q. Almost all sets of s reals are also not very
well approximable. Chapter 3 of Harman (1982) generalizes Schmidt’s result to
a(s, k) ~ v/ (ks) as s—>00. We now improve these results as follows.

Theorem 4. Let k> 2 and ¢ > 0 be given. Let of ={x,,...,a,} be a set of reals.
Suppose that there are R disjoint subsets < of o, each containing t members, and such
that each 54 is a not very well approximable set. Then, for N > N(e, &), there are solutions
to (1) with a(s, k) = tk—e. In particular, of o is a not very well approximable set, then
one obtains a(s, k) = k[s/R]—e.

Our final result concerns the generalization of Theorem 1 to simultaneous
approximation (see Baker & Harman (1981) for what is known without the
restriction ae A°). For a vector b = (b,,...,b,) € R" we write [|b] to denote max; [|b,].
Given hs real numbers o;;, i = 1,...,h; j=1,...,s, we put
Fiy(x) = X ayaf,

i=1
and write F(x) = (Fy(x),...,F,(x)). We then have the following result.

Theorem 5. Let k,h = 2 be given, and let a;€ A be given for i =1,...,h;j=1,...,
s where

s=R(Eh(A+1)—1). (7)
Then, given € > 0, for N > N(e, (a;)) we have
min ||F(n)|| < N~%/"+e,
neN

Remark. The exponent —k/h is best possible as can be seen by taking a; = a,
where 1, a,,...,a, are linearly independent over Q.

2. Preparatory results

We begin with a familiar type of lemma linking Diophantine inequalities to bounds
for exponential sums. The result follows by modifying the work of ch. 2 in Baker
(1986). These modifications appear explicitly in ch. 1 of Harman (1982).

Lemma 1. Let y, be a sequence of real numbers, and a, a non-negative real sequence.
Then for all N, L > 1, if

L N 1 N
Z 2 2 e(uyn) < '6 Z ay (9)
u=1 In=1 n=1

we have

min |y, | <L

1<Sn<N

Phil. Trans. R. Soc. Lond. A (1993)
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We shall be estimating the exponential sums which arise via the large-sieve
inequality. The following is a multidimensional version of the inequality which
occurs as Lemma 5.3 in Vaughan (1981).

Lemma 2. Let 9 be a finite set of distinct points in R" where h > 1. Write

d = min ||g—h|.

#h
& hes

Let a(n) be a sequence of complex numbers for ne Z". Then

2

Y < (0N Z Ja(n)l®. (10)
neN

ge¥y

Lemma 3. Let k = 2 and 5 > 0 be given. Define R(k) as tn Theorem 1. Then, given P,
there exists a set 9 such that

2 a(n)e(gn)

neN

B<Z[1LP], |2 >P, (11)
1 R

and J Y e(ynf)| dy < PE*H, (12)
0 (ne#

Remarks. The implied constants in (11) and (12) depend at most on 5. In actual
fact, the  is only required for certain k.

Proof. For k=2 or 3 the bound (12) follows from Hua’s inequality with # =
[1,P].Z (see Lemma 2.5 of Vaughan 1981). For k =4 the result follows from §4
of Vaughan (1989) with

B={neZ:1<n<P,pn=p<N%

for some & = d(#) (from the work later in Vaughan’s paper it is clear that the # can
be dispensed with). For 5 < k < 15 see (Vaughan & Wooley, this volume), which
gives the result with the same type of set # (only in the case k = 6 is the # required).
For k& > 16 see Wooley (1992). In this last paper integrals of the form

|

are estimated, but the set &/ (whose members have a large prime factor) can be
replaced by % if Theorem 1.8 is appealed to in place of Theorem 1.5 in Vaughan
(1989).

Lemma 4. Let k > 2 be given, and write H(k) = R(k)+ 1. Then, for every set {a,,...,
ay} of non-zero integers, there are integers s,b (s # 0) such that for all sufficiently large
r the equation

u v

S e(yn®) dy

neR

Z e(yn”)

nes

rs+b=a,nf+.. . +taynk (13)
can be solved in integers ny, ..., ny with
1 <n; < 2|rs+b|'x.

Proof. This follows using the Hardy-Littlewood circle method as in ch. 7 of
Davenport (1962) with Lemma 3. Of course, for £ > 3 one can reduce H(k) to G(k),
and for k = 2 one can use the theory of quadratic forms (see ch. 8 of Jones (1950))
but the result as stated suffices for our applications here.

Phil. Trans. R. Soc. Lond. A (1993)
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3. Proof of Theorems 1 to 4

Proof of Theorem 1. Put 9 = ¢/(10k), L = N*°, M = N*, P = N/M. We will show
that for all large N there are solutions to
[mF(n% o+ ...+ 0k op)| <L?
with
m<M, 1<n; <P, ne# (% asgiven by Lemma 3).
The result is trivial if any o; is rational, so we henceforth suppose each a; to be
irrational. By Lemma 1 it suffices to show that

IEEDIEEDY

usLm<Mj<R

< 3[M11BI".

z e(umPnf ay)
nEeR

This will follow from Holder’s inequality for all large N once we establish that, for
each j,
R

R = o(PRM). (14)

usLm<M

3 e(um®o;n")
neR

We write a(n) for the number of solutions to
n=rf+.. +rf reB, s=1iR.

We note that the number of solutions to v = um* for fixed v is <€ P”. The left hand
side of (14) is thus

2

<P X

u< LM

By Roth’s Theorem (Roth 1955, or see ch. 5 of Schmidt 1980) since «; is an algebraic
irrational we have

2 a(n)e(unay)
n< PF

llcey | > (LM*)~1

for 0 < w < LM* provided that LM" is sufficiently large. Hence, by Lemma 2 with
h =1, we have
2
> Y a(n)e(unay)| < ((LM*)"*74+P*) ¥ a(n)? < PPPR-EH
u<LM® In<P¥ n<P¥
by Lemma 3. This establishes (14) and so completes the proof.

The reader should note the vital role played by the variable m above. Without it
the application of the large-sieve inequality would have yielded an unsuitable bound.
This use of a small common factor is characteristic of most of our proofs here. The
reader should note that Theorem 1 remains valid when the variables are restricted
in certain ways. For example, we could have made the variables square-free, or sums
of two squares. We could not have taken the variables to be prime by working as
above. We shall show elsewhere, however, that weaker results (in terms of the
number of variables required to obtain the best possible exponent) can be obtained
even in this case. In order to take R as an odd integer we need to work directly from
the Sobolev—Gallagher inequality in place of the large sieve, and modify the work of
Vaughan & Wooley to obtain bounds of the type given by Lemma 3 for

)

R
Z (n/P)*e(yn®)| dy.

neR

Phil. Trans. R. Soc. Lond. A (1993)
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332 G. Harman

Proof of Theorem 2. Suppose first that 1,a;, a; are linearly dependent over @ for
any j,k with 1 <j,k < T. Then there are integers 4;, 5;, C;, such that

Bjo;=C+ A0y, j=2,...,H, B;>0, A;#0.
We therefore need only prove that
oy (¥ +dynk+ ... +dynk)|| < KN7*
with 1 < maxn; < N/(max B;) (= X say) and d; = A;Bf ™', since then
ooy nE 4oty (By g)¥ + ... + gy (By ng)¥|| < KN7F.

Now let b, s be the integers given by Lemma 4 for the set {1,d,,...,d,} and let a/q
be the convergent to o, with largest denominator less than X*/|s|. Then we can find
an integer d = b (mod s) with |d| < |sq],

Ide, || < |dsl/gX* +b/q,
and d=nf+d,nk+.. . +dynk
has a solution with 1 < maxn; < 2]d["* < X. Since
q > c(ay) X* (15)
(because a, is quadratic) we have
oy nF +ay(Byny) + ... + ag(Byng)t| = |lda,|| < s?/X*+b/c(x,) X¥ < KN7*

as desired. This part of the argument fails if ; is not quadratic, since we would then
only know ¢ > c(a,;, ) X*?™ in place of (15). We may obtain infinitely many
solutions, however, by only considering those N for which X* > ¢s > (X —1)F.

If we are not in the above situation, then, without loss of generality, {1, , &} is
a linearly independent set over @. Hence, by Theorem 1B of ch. 6 in Schmidt (1980),
{ot), a5} is @ not very well approximable set. Thus

min max (|, o], [lo, v]) > V5 (16)
1<v<V
for all sufficiently large V. We will establish Theorem 2 by finding solutions to
[m* (o, n¥+ oy nk) +agnk+ ... +apnk| < L7?

with L =N¥ 1 <m <NY n,n,ed (the set from Lemma 3 with P = N%1

= 1/(100Rk)), n;e %, for j = 3 (%, being the set from Lemma 3 with » as %,, but
P = N). These restrictions will henceforth be denoted by *. In view of Lemma 1,
we therefore need to demonstrate that

pX

u<L

By (16) and Lemma 2 with A = 2 we have

Y e(u(m® (o, nF 4oy nE) +aynk+ ... +opnk))| = o(WET10), (17)

R

Z Z e(um’“(al n’f+a2 nlzc)) < (N9k/10 +N111c/15)2N9(R—Ic)/5+317
mi?vl‘l/"’ e
<< N9R/5+317‘ (18)

Phil. Trans. R. Soc. Lond. A (1993)
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Also, by Lemma 2 with 2 = 1, for j > 3 we have

R

Z < (Nlc +Nk(1+17))NR—Ic+17

u<L

> e(ua;nk)
neBy

& NE+E+D 7,
Thus, by Hélder’s inequality, the left-hand side of (17) is
< (A0 N RHG+1m) 11/ R (N 9R/5:+37)1/R
= o(NE+9/10)
as desired, by our choice of 4. This establishes (17) and so completes the proof.
Proof of Theorem 3. Let t = [(s—3})/(R—1)] and define 6 by
(1+6) =2k—1 (so 0= (2k—1)V1—1).
Now let Y be a large number. By Dirichlet’s theorem, for each a; there is a ¢; with
lgyoull < Y7 and 1 <gq; < Y*1L (19)

We suppose that the smallest g; satisfying (19) is chosen. If ¢; < Y for some j then
llo;gf | < Y% so we get a solution of the required type (indeed a much better one!)
with only one variable non-zero. If there is a solution of this type for infinitely many
Y this proves the result (if any «; is rational the result is trivial, otherwise q;—>00 as
Y —>o0).

Now suppose that ¢; > Y for each j. By the pigeon-hole principle there must be R
or the g; (say with je./) in a range of the form [H, H'*] with ¥ < H, H'*? < Y1,
Define P, L, M, N by

P*=HY LMF=H, N=MP, M=P*" 75=c¢/10k.
It then follows, as in the proof of Theorem 1, for each je.o/, that we have

R

usLm<M

% e(a; umk nk)
neR

since
lojull > (2H™%™ for w<H

)

by the definition of the g;. Hence, if we put the variables n; = 0 for j¢.o/ we obtain
a solution to

min | F(n)|| < L7
neN
Since L > N¥+07=¢ and (1 +6)™! = k—c(s, k) this completes the proof.
When s is not very large an improvement in the exponent can be obtained by
defining 6 by
A+0) =k(1+(1+6)1)—1,
and choosing ¢; with

lg;oll < ¥~040° and 1< g < YOro',

For large s this only improves the O(1/s% term in c(s, k). However, for s = R this
produces a notable improvement. In this case P = H = Y above. Professor R. C.
Baker has pointed out that this leads to the following result which is uniform in N
and improves the work of Cook (1972) for k > 6.

Phil. Trans. R. Soc. Lond. A (1993)
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Theorem 6. Let k = 6, N > C(k,€), and R = R(k) be as given in Theorem 1. Let o, ...,
og be real numbers. Then there are solutions to (1) with a(R, k) = 1—e.

Proof of Theorem 4. Clearly we need only prove that

R
SO | T e(umF(a,nF+ .. +a,nf)| = o(PEM), (20)

uLm<M \n;e®

where «,,...,a, are not very well approximable, L = N*#~¢, M = N*1, 5 = ¢/(10kt),
P = N/M. We combine um” into a single variable as before with the loss of a P factor.
We can then bound the left-hand side of (20) with Lemmas 2 and 3. The estimate we

obtain is then
< P?](Pk_}_Pk)i (PR—-IC+77)t — O(PtR—ﬂM)

since, by (6), there are no solutions to

max ||o; 7| < P7%
J

if r < P77 and P is sufficiently large.

4. A simultaneous approximation lemma

In this section we shall establish an analogue of Lemma 1 for simultaneous
approximation. Lemma 7.4 of Baker (1986) would have sufficed for our application
(with the addition of weights a,) but it has an extra N” factor on the summation
length. One could add weights to the results of Cochrane (1988) and so obtain an
analogue of Lemma 1. Here we present an alternative approach and establish a
slightly more general result (in that we speak of an arbitrary lattice 4), and find that
the calculation of the constants is very straightforward. The constants which arise
from Cochrane (1988) are slightly better, however, We write |u| for max |u;| where
u=(uy,...,u,)€R" We also write 4, for the hypercube [—1,1]* = R". We then have
the following result.

Lemma 5. Let h > 1 and let A be a lattice in R". Suppose that a, € R" and a,, is a
sequence of non-negative reals. Then the inequality

1
E E a, e(uotn) < 4;h271 Z a, (21)
uell In<N “lagnN
Wi
implies that a solution exists to
o, €EB,+y where yed and 1<n<N. (22)

Here IT denotes the polar lattice to A.

Corollary. Let a, be a sequence in R" and a,, a sequence of non-negative reals. Then,
for all N, L > 1, the inequality

<Ll v (23)

> 4h*—1,°y

ueZ"

u#0
lul<L

Phil. Trans. R. Soc. Lond. A (1993)
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tmplies that a solution exists to
floo, | <k/L with 1<n<N.

The corollary follows by putting A = (LZ/h)" (so I = (hZ/L)"), while replacing a,, by
L, /h.

We shall prove Lemma 5 by constructing a lower bound approximation to the
characteristic function of %,. We write y°(x) for the characteristic function of the
interval [—1,1]. We note that by Lemma 2.5 of Baker (1986), for any w > 0, there
are continuous functions y*(x) and y~(x) belonging to L!(R) such that

V(@) < 2@ <K@, O =F =0 for >, (24)
and f " () -y (@) de = fO (X () — §°@) da = w, (25)
Here fiy = f " flaye(—

The fact that y~(x) can be negative causes problems in the present context, since we
cannot form a product of such functions and still obtain a lower bound. We
circumvent this difficulty by employing the following lemma.

Lemma 6. Let y,(x) denote the characteristic function of %,. Then, for any choice of
w above, we have

nooh n
Xg(x) = X I x77 () — (h—1) IT x*(x)), (26)
k=1j=1 j=1
o= if =k,
where o'(g,lc)—{_l_ it 2k

Proof. This lemma is essentially proved in a different context by J. Briidern and
E. Fouvrey in work currently being prepared on ‘Le crible vectoriel’, and T thank J.
Briidern in particular for drawing my attention to this result. This has considerably
improved the present section of this paper from its original version. We first note
that

hoh n
Xa(x) = X T x99 (@) — (h—1) IT X" (x;), (27)
k=1j=1 J=1
oo [0 if j=k,
where T(j,k)—{+ it Ak

To see this, first note that the right-hand side of (27) is clearly non-positive if one of
X°(x;) is zero. If every x°(x;) is 1 then the right-hand side can be shown not to exceed
1 by induction on k. Clearly (26) follows from (27).

Proof of Lemma 5. Let g(x) denote the right-hand side of (26) with w = k. Then, if

g(e) = jmg(x)e(—xt) dt, (28)
we have gt)=0 for |t =h. (29)
Also G0) =h2+1/R)"Y2—1/h)—(h—1)(2+1/R)"

= B2+ 1/h)r
Phil. Trans. R. Soc. Lond. A (1993)
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336 G. Harman
Now let Tx)= X g(x+y),
yed
and write ¢, = (det A)‘lj T(x)e(—px)dx for pell,
F

where # denotes a fundamental paralleliped of 4. Then, by (28) and (29), ¢, = 0 for
Pl = k. Hence

2 eyl

pell

converges, so T(x) = X c,e(px)
pell

(see Lemma 7.2 of Baker (1986) for example).
Now suppose that no solution exists to a, €%, +y for ye A. Then, by (26),

> a, T(a,) < 0.

n<N
Hence Xlel| T ayelpa,) =cy T ay,. (30)
pgg) n<N n<N
P

Since the transform of any product I7x”Y () is, in modulus, bounded by (2+1/k)"
(using (25) & times), we obtain, when ¢, # 0,

loof o BTMEHI/BMTT
le)l © @h—1) 2+ 1/h)" — 4hE—1

This completes the proof of (21).

5. Proof of Theorem 5

Given a,; as in the statement of the theorem, write a; = (ay;,...,a,;). We need to
be careful of linear dependencies between the coordinates of a;. For example, if the
set {1, oy, ot,,;} 1s linearly dependent over @ for many j, then we are essentially in an
(h—1)-dimensional situation. To facilitate the discussion we write

A;=1{neZ": na;e Q). (31)

Clearly each 4; is a lattice, and 4; = {0} if 1, a,;,..., a,; form a linearly independent
set over @.

Lemma 7. Let a; be as above, and let 5 > 0 be given. Suppose that L, M, P > 1 satisfy
(LMEY1 < PE. Suppose also that for some set o of positive integers we have

N 4, = {0}, (32)
Jjesd
R
Then DD YN I e(Z n¥ m* uozj) < PHIED, (33)
ue?? m<M neB  \jesd
0<|u/<L jest

Proof. Since the a;; are algebraic, for LM* sufficiently large, either
loyull > CMFY or [ayul =0
Phil. Trans. R. Soc. Lond. A (1993)
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for Ju| < LM (this follows from Theorem 1D of ch. 6 in Schmidt (1980})). Since (32)
holds, however, we cannot have [a; u|| = 0 for every j € o for any one u. We may thus
bound the left hand side of (33) by Lemma 2 with & = |.2/|, § = P7*, also using Lemma
3 as before. The required bound then follows.

Proof of Theorem 5. Suppose that the result has been proved in A—1 dimensions,
Let
R if h=2,
T\ Grh—1)—1)R if h>=2.
So T is the number of variables required to prove the result in 2—1 dimensions.
Suppose first of all that there is a set o/ = {1,...,s} with |.&/| > 7" and

N 4, # (0.

Jed
Without loss of generality o ={1,...,T}. Then there is De Z" with D # 0 and
Da;eZ for j = 1,...,T. Without loss of generality the hth coordinate of D, say D,,
is positive. Let a; and D’ be points of R"~! consisting of the fitst A—1 coordinates
of a; and D respectively. By the inductive hypothesis we can find n,..., %, with
1 < maxn; < N/D, and

ko
> ny o
i<T

for all large N. Here we can take ¢ = k(2h(h—1))~'. Now

h—1
<D™t X Dy

j=1

< (N/DyHOmDe

Kok
> octhhnj
i<T

Dy~ ( % ”;]'C(Dh “hj)) ‘ ‘

i<T

D™t X nf(Da;—D'a))

I<T

k ’
DI AIN
j<T

Hence

X (D "j)k a;

isT

S D7 X D,|(N/D,,) ke

i<h
< N—Ic/h

for all large N. This proves the result in this case.
Now we suppose that (32) holds for all subsets of {1,...,s} having at least 7T
members. If .o/ is such a subset then there must be a subset 2 with |2| < & and

N 4; = {0}.

Jje2
Since s = T'+hR for h > 3, we can split {1,..., s} into R subsets &, with this property,
plus some remainder. In the case b = 2 it is evident that 1,...,2R can be split into
R such sets (here, of course, each &, has one or two members). The proof is completed
by an appeal to Lemmas 5 and 7.

I thank Professor R. C. Vaughan and Professor T. D. Wooley for making available their results
before publication. I also thank Professor R. C. Baker for pointing out Theorem 6.
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